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1_ SUMMARY

Analytical and experimental procedureshavebeenused to predict the

noise transmissionthroughdouble wall windowsinto the cabin of a twin-engine

6/A aircraft. The theoretical model ts that of modalanalysts. Theexpert-

mental noise transmissionestimates were obtained utilizing a localized source

input. Thenoise transmissionwasoptimized througha parametric variation of

the structural andacoustic properties.

Thenoise input pressuredue to propeller blade passagehamontcswas ex-

pressed in the fom of a propagatingrandompressure fteld. These inputs were

selected utilizing experimental fltght data andempirical predictions. The

acoustic spaceOf the cabin interior wasapproximatedby a rectangular enclo-

sure. The doublewall windowsare modeledas two plextglass panels whichare

coupledthrough the air spacethat separates them. Themodesand frequencies

of the windowsare calculated from closed fom solutfons.

The add-ontreatments or design changesconsideredin this study include

that of massaddition, increase in plextglass thickness, decreasein window

size, increase in windowcavtty depth, depressurtzatton of the spacebetween

the two windowplates, replacementof the air cavity with a transparent vis-

coelastic material, changein the stiffness of the plextglass material, and

differentabsorptivematerialsfortheinteriorwallsof theaircraft.To

reducethenoisetransmittedthroughthedoublewallwindowsto acceptable

levels,changesIn thedesignof theaircraftwindowneedto be incorporated°
b

The weightaddedto thealrct.aftby a newwindowdesignis about25 Ibs. :'
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2. INTRODUCTION

The main emphasisof the presentstudy is on developingan analytical

model capableof predictingthe noise transmittedthroughdoublewall win-

dows. The theoretical model is then used to supplement the study presented

in Ref, 1 and to optimize the noise transmitted tn atyptcal twin-engine G/A

aircraft. To verify theseanalytlcalpredictions,experimentswere performed

in the laboratoryfor a similarwindowconstructionutllizlngan acoustic

guide set-up to generate the 1ocallzed source inputs. Then, a slg111flcant

amount of effort was devoted to deriving practical recommendationsfor the

detailed and systematic evaluatlon of the varlous parameters of the add-on

treatments and/or design changes needed to reduce the noise transmitted

through aircraft windows to acceptable levelso

The information avallable in the literature and from ongolng research

on the response and noise transmission of double wall aircraft windows is

very 11mitedo The propeller-drivenGIA aircraft,in which the maximumnoise

intensityoccursat low frequencies,deservespeclalattention. The govern-

ing differentialequationsfor the vibrationof a doublewall construction

are developedfor the case in which the core behavior(air space)can be de-

scribedby a slmpleuniaxialconstitutivelaw. In this particularcase, the

bendingand shearingstressesin the core are neglected. Furthermore,the

cavitybetweenthe two plexiglassplatasis assumedto be uniform. To ac-

count for the curvatureeffectsof the outsidewindow,correctionsare Intro-

duced when modellngthe stiffnessof the cur_eJwindow plate. A modal anal-

ysls Is utlllzedto decomposethe vibrationsof the face plates,and the

coupled system is solved by a Galerktn-ltke procedure [1,2]°

The noise transmitted through a double wall window construction into the

-2-
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aircraftshown in Fig. I is obtainedby solvlnga 11nearlzedwave equation

for the interiorsound pressurefield. The geometryof the aircraftcabin

shown in Flgo I suggeststhat the interioracousticspacemay be treatedas

a rectangularenclosure. Such an ideallzatlonof the cabin allowsfor slmple

representation of the acoustic modes. The effect of wall abs;rption is ac-

counted for by utilizing point impedanceand bulk reacttng models [3]. The

time dependent boundary conditions are transformed tnto the governing equa-

tion and then the solutio_ of the resulting nonhomogeneousdifferential equa-

tion with homogeneousboundary conditions is obtained [4].

The exterior surface pressures acting on the aircraft windowsare rep-

resented by a randomconvectlngpressurefield. The noise spectrallevels

are obtainedfrom experlmentalflightdata. The convectiontrace velocities

are estimatedin approximationfrom the groundand taxi tests given in [5,6]o

The noise inputsfor the laboratoryexperimentsare generatedby an acoustic

guide set-upwhereina speakerand a noise path Isolationdeviceare used.

l

i
#
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3. ANALYTICALMODEL

The basic conceptof the analyticalmodel used to calculatethe noise

transmissionthroughaircraftwindowsis thatof modal analysis[1,2,7-10].

However,a new approachhas been undertakenfor solvingthe acousticequa-

tionwith tlme dependentboulldaryconditions. In this approach,the time

dependent and absorbing boundary conditions are transformed tnto the govern-

ing equation by utilizing Green's theorem, This solutton is then coupled to

that of the vibration of the double wall system,

3.1 Acoustic Model

Consider that the interior space of the aircraft shown in Fig, 1 can be

approximated by a rectangular enclosure occupying a volume V = abd as shown

in Fig. 2. The noise enters the interior space through the vibration of the

double wa11 window located at x = ao + Lx, y = bo + Ly and z = O. The in-

terior walls of the enclosure are taken to be absorbent for which the point

impedance and/or bulk reactance properties are prescribed [3,4]. The per-

turbation pressure p inside the enclosure satisfies the linear acoustic wave

equation

v2p. = B/c2

where V2 tS tl_ Laplactan operator, V2 = B2/SX + 82/By + _2/_ Z , and _ and

c are the acoustic damping and speed of sound, respectively. The types of

boundary conditions to be satisfied by Eq. 1 depend on the interior surface

conditions of the walls, These could range from those of acoustically hard

walls to those of htghly absorbent walls which are treated with acoustic in-

sulatton materials, Consider a general model of the boundary conditions where

all the walls including the vibrating surfaces are absorbent, Then, the

-4-
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OF POOR QUALITY

boundaryconditionsto be satisfiedby Eq. 1 are [3,4]

-_p/_z--p[_+B(_)(_2/_x2+_2/_y2)_]/Z(_)-pUB (2)
atz-0

and

ap/@n • - p[_ + B(=)v_]/Z(=) otherwise (3)

where Z{=), B(=) and v_ are the point impedance,bulk reactionand Laplaclan

at the surfaceof the enclosure,respectively.Equation2 demonstratesthat

the boundary condition for pressure p on z = 0 is nonhomogeneousdue to the

acceleration input wB of the bottom plate (Fig. 3), The solution to a sys-

tem with nonhomogeneoustime dependent boundary conditions can be achieved

by first transforming the inhomogeneousterm PwBfrom Eq. 2 into the govern-

ing equation (Eq. 1). Consider the expression

p(x,".z,t) = q(x,y,z,t) + p_}B(x,y,t) • G(z) (4)

where q are the .olutlonsto the associateihomogeneousproblemand G(z) is

chosento satisfythe given boundaryconditions. Furthermore,by utilizing

Green'stheorem,the effectof the absorptionintroducedthroughZ(=) and B(_)

can also be transferredinto the governingequation[8].

SubstitutingEq. 4 into Eqso 1-3 yields

v2q - _ - _/c 2 - pf = 0 (5)

in the enclosure and

_q/an = - p[_ + B(=)v_]/Z(=) (6)

on all the boundaries where

-5-
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f(x,y,z,t)= (-_2WB/BX2- @2wB/_y2+ _)B/C2 + _WB) • G - WBJ2GIdz?

(7)

In obtainingthe boundaryconditionsqlven by Eq. 6, It is assumedthat at

x - O,a and y _ O,b the motionsof the flexiblewall wB do not extend tc

those boundaries, thus, the flexibledoublewall plate can be locatedany-

where in the regionGO .<x ._a-%, co _<y ._ b-t.o where _;ocould be a small

positivenumberbut co _ O. A suitableform for the functionG(z) is

G(z) = z - 2z2/d + z3/d 2 (8)

However,any continuousfunctionwhich satisfiesEq. 2 is a suitablefunc-

tion for G(z) [11]o

From _reen'stheorem

/V(qv2Yijk" Yijkv2q)dV= /S (q BYijkBn" Yijk3_-_n)ds (9)

where YiJkare the acousticmodes of a rectangularenclosurewith hard walls,

and V and s indicate the volume and surface integrals, respectively. Then,

utilizingEqs. 5, 6 and g and

2

VaYiJk+ (_lJk/c)Yljk = 0 (10) .I
4

,i

in the enclosureand
i
i

_Yljk/_n= 0 (ii)

at all the boundaries, it can be shown that

-6-
.1
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QlJk + 2_lJk_IJkQlJk+ U_JkQljk + pc2Fijk

_T _ "1'A B(=}vs2q]YIJkdA = 0 (12)
+ T£ [q +

where

QlJk(t)= fV qYiJkdV (13)

Fijk(t)= fV fYljkdV (14)

_ijk= Bc2/(2Uijk) (15)

where _ijk are the acousticmodal frequenciesand the symbolA in Eqo 12 in-

dicatesthat an integrationis taken over the absorbinginteriorsurface[8].

Expandingthe functionq in terms of the orthogonalmodes Yijk and using Eq.

13,

_ oo

q = a_d Z Z Z qijkYijk/(elejek) (16)t=o j=o k=O

where

2 i =0

ei = (17)
1 t_o

Substitutionof Eq. 16 into Eq. 12 resultsin

-7-
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QiJk + 2{lJk_ijkOlJk+ "lJkQlJk2+ {2pc2/Z).

({bojk/a)r_=O[I + (-l)r+l]Qrjk/er

¢-l_s+J'"
+ (biok/b)s! 0 [i + , y JQlsk/es (18)

+ (bicio/d)7. [I + (-1)u+k]_iju/eu}u'O

+ pc Fljk = 0

where

2

bijk = i - B(=)(=ljk/C) (Ig)

and Fijk can be obtainedfrom Eq. 14. Expandingthe flexiblewallmotionsof

the bottomplate in terms of the normalmodes correspondingto simplesupport

boundaryconditions

X=(x.y> (20)m=l n=l

_B
m_x n_y are the

where "mn are the generalizedcoordinatesand Xmn = sln[_-sln Ly
panelmodes,and using Eqo 14,

Fijk(t)= =_ LiJmn{CkAmBn(t) +mlnl

+ Dk[((mn/Lx)2 2)+ (n_ILy) AmBn(t) (Z1)

"""
, " " ,., . "'.,',;T...-/ '-',", .....

__.. ..... . ....... ...,, C.S- C '" .......... _: ............... _o_,.-_'. ,_

'_ 1984003816-TSB02



OF POOR QUALFrY

where

LX Ly

Lijmn " [0 fO YiJo(X'Y)Xmn(X'y)dxdy (22)

611 - (-1)k]l(k_)2 k _ 0

Ck =

1 k=O

2 (23)
d2(Ck - 1)/Ck_) k # 0

Dk =

d2/12 k = 0

Equation 18 and subsequently Eqs. 4 and 16 can be solved in a time domain

utilizing a numerical integration procedure. However, the information usually

available on the point impedanceZ and the bulk reaction coefficient B is giv-

en in a frequency domain. Thus, it is advantageous to develop the solution

for the acoustic pressure p within a frequency domain. Taking the Fourier

transformation of Eqs. 18 and 21,

_'ijk(_O_jk- co2+ 21jo{ijk_ijk) + (2pc2i_o/Z)."

,I

{(bojk/a)r_0 [1 + (-1)_l]_rjkler "

.o.s+j
+ (blok/b)sZ0 [I + (J.) ]Q-isk/es- (24) ,,

+ (bljo/d)) [I + (-1)u+k]_lju/eu} ,uO J

i'

aFIjk i= pC2m

-9- _i
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'p'ljk(_O)m _ _ LiJmn_n {Ck + Dk[(mNLx)2+ (nNLy)2m=1n=l

(=/c)2- + 21=;tjk=ijk/C 2] } (25)

anda bar indicates a transformed quantity. Then, from Eqso4 and 16, the so-

lution for the acoustic pressurein a frequency domaints

_'(x,y,z,=) = a-_ i=_OJ=_Ok=_OYijk(X'Y'Z) _'t'tk(=)/(etejek)

- =2pG(z) ;B(x,y,=) (26)

The spectral density Sp(X,y,z,=) of the acoustic pressure can be obtained

by taking the mathematicalexpectation of Eq° 26 and then using the spectral

decompositionas presented in Ref. 12. Then, the soundpressure levels inside

the enclosure measuredin decibels relative to a reference pressure POare de-

temtned by

SPL(x,y,z,=) = 10 log {Sp(x,y,z,=)Aco/p_} (27)

where z_ ts a selected bandwidthat which the spectral density Sp is estimated )

and PO= 2.9 x 10-9 psi (20uN/m2). A quantity relating the spectral density '

of the enclosure pressure Spto the spectral density of the external pressure
S (=) ts noise reduction NR, which is defined as

_(=)/Sp(x,y,z,=)}NR(x,y,z,=) = 10 log {S (28) f
t

It ts nowconvenient to define the noise reduction on a 1/3 octave scale.

-10-
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Thus

_U

/_ S_(_)d_

NRI/3(X,YmZ,_) = 10 log Uu (29)

/,_ Sp(x,y,z,_)d_

where _ and =u are the lower and upper bounds, respectively, of each 1/3

octave band in question. The solution for the perturbation pressure given

in Eqs. 27-29 is in terms of the flextble wall motions _B(X,y,e) of the double

wall system shown in Fig. 3. Thus, the response characteristics of the double

wall window system is determined next.

3.2 Responseof DoubleWall Windows

The doublewall aircraftwindow shown in Fig. 3 is composedof curved

externaland flat Internalplexlglasssheets. The air space betweenthe two

platesis approximatedby a uniformlydistributedair spring. A linearspring-

dashpotmodel is used to characterizethe behaviorof the air spring. Then,

a slmpledoublewall structuralmodel is constructedwhere both plexiglass

platesare taken to be flat and simplysupportedon all four edges, To ac-

count for the effectof the curvatureof the outsidepanel,the stiffnessof

the outsidewindow is increasedaccordingly.The governingequationsof mo-

tion of the two platescoupledthroughthe linearspringcan be writtenas

roT%+ T+DTV WT+ T-wB]

+ (I/3)ms@T + (1/6)ms@B + PE(X,y,t)= 0 (30)

-11- _,_

' ......7"
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mB_B + CBWB + DBV_'wB + Ks[WB - wT]

ee

+ (113)ms;;B + CI16)msWT - p(x,y,O,t)= 0 (31)

where

VW- aW/axW+ 2aW/ax2ay2 + @Wlay_ (32)

mT = PThT

mB = Pshs (33)

mS = Pshs

DT = ETh_/[12(1 - v_)] (34a)

DB = EBh_/[12(1 - v_)] (34b)

where wT and wB are the vertical(transverse)displacementsof the midsurfaces

of the top (exterior)and bottom (interior)plates,respectively. PE(X,y,t)

and p(x,y,O,t)representthe externalrandompressureactingnormal to the

exteriorwindow plateand the acousticback-uppressureactingon the interior

plate, respectively. The subscripts T, B and S denote the top plate, the bat-

tom plate and core, respectively. KS[---] is a constitutive law operator rep-

resenting the forces exerted on the elastic plates by the core. Whenthe core

is very soft, Poisson's ratio of thematerial is nearly zero, and the bending

and shearing stresses are negligible; consequently, the material can be des-

crtbed by a uniaxial stress-strain relation. In obtaining Eqs, 30 and 31 it

was assumedthat the inertia force varies linearly across the thickness of

the soft core. Thus a consistent mass formulation is used with the terms

ms/3 and ms/6 representing the apportioned contributions of the massof the

core to the two plates.

-12-
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Depending on the type of core material used to construct the double wall

system, there exist several linear models to characterize the soft core be-

havior. These models include:

1. Linear Elastic Spring Free of Damping

Ks[WS] - ksWS - EsWs/hS (35)

wherewS Is the relativedlsplacamentof the coreand hS Is the core

thickness (wS = wT - WB).

2. LinearElasticSpringwith StructuralDamping

Ks[WS] = ks(1 + _gS)Ws= ES(I + !gS)ws/hs (36)

where gs is the structuraldamping factorand i = /:T.

3. LinearElasticSpringwith ViscousDamping

_[W$] = ksWS + CsWS = EsWs/hS + nSWs/hS (37)

where nsts the viscosity of the soft core material.

4. LinearViscoelasticModel

]Ts[Ws3= ES(m)W's/hs = (E_(=) * ! E_(=)W's/hs (38)
'i
,)

where ES(=) is a complex Young's modulus and a bar indicates a Fourier ;)
LI

transform. E_ and E_ are real functions. ='!

I

Depending on the complexity of the core material (non-untfom cavity,

air leakage,materialsother thanair, etc.), the core behaviorcould be

modeled by one of the expressions given tn Eqs. 35-38o The linear visco-

elastic model given in Eq. 38 is the most general expression that can be

-13- _ ,t
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usedto represent soft core behavior.

The solutions to Eqso30 and 31 can be expandedin terms of simply sup-

ported plate modes

WT(X,y,t)= _ _ AITln(¢)XmnCX,y) (39)m=l n=l

WBCX,Y,t)= _ _ ABmnCt)XmnCX,y) (40)m=l n=l

where_A_nandnAmnare generalized coordinates of the top andbottomplates,

respectively, and Xmn= sin (m_x/Lx) sin (nxy/Ly). Substituting Eqs. 39 and

40 into Eqs. 30 and 31 and utilizing the orthogonality principle yields a set

of coupleddifferential equations in A_nandA_n. Taking the Fourier trans-

formation of these equations gives

7_nC_) = HTn(m)[FTmnCm)+ _nCm)CEsCm)/hs+ mZbs)/mT] (41)

X_n(_)= HBn(_)[PBmn(_)+ T_nC_)(EsC_)/hs+ _2bs)/mB] (42)
.I

T 2 T T
HTji(_) = {(mmn) - (aT/mT)_2+ 2i_mn¢mn+ Es/(hsmT)}"1 (43)

B 2 2_(_.omBn_n + Es/(hsmB)}-1 (44) ,HmBn(_) = {(mmn) - (aBlmB)_2+
:i

in which aT = mT + ms/3, aB = mB + ms/3, bS = ms/6, _'Tmnand_n are the trans-

formedmodalamplitudes of A_nand A_n, _Tn and_Bmnare the generalized random '
forces '

.i

Ly Lx :

l_TnCm)= _ '/0 IO _E(X,y,_)Xmn(X,y)dxdy (45) !

-14- @_ !,
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Ly Lx

_mn(=) = NlmTn[0 J'O _(x,y,O,=) Xmn(X,y)dxdy (46)

T andMBmnare the generalized massesof the top andbottomplates,whereHmn

respectively

[Ly Lx
HmnT . mT 0 [0 X_n(X'y)dxdy (47)

Ly Lx
- X_n(X,y)dxdy (_)M_n mB[0 [0

In obtaining these equations a linear viscoelastic modelfrom Eq. 37 was se-
T

lected to represent the behavior of the core material. The quantities tmn
B

and ¢mnape the modaldampingratios of the top and bottomplates, respective-

ly. The uncoupledfrequencies of the face plates can be obtained from

mmnT-m/mT)_[(m_/Lx )2 (n_/Ly)z]= (D. + (49)

B . + (n_/Ly) (50)_mn (DB/mB)_[(m_/Lx)2 23

Theacoustic cavity back-uppressure_(x,y,O,_) is a function of the bot-

tomplate motion. To determine completely the plate motion, the governing

equations of the acoustic field inside the enclosure needto be solved as a

coupled systemtogether with the face plate equations of the double wall sys-

tem. However, it has beenshownin numerousreferences that, except whenthe ',

panel ts yew thin and the enclosure ts shallow, the effect of the acoustic i. '

back-uppressure on the responseof the bottom panel is negligible. In the

present study, the back-upacoustic pressure is neglected by imposing_(x,y, )

O,e) = ) = O. As a result, from Eqs. 41-44, the frequency responsefunc- ' ;

ttons of the doublewall sandwichsystemare
t q

t
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T . HTn T -®ran (45)
1 - (Es/h s + _2b$) (HmnlmT)(HBmnlmB)

®mBn= ®mTn(Es/hs+ _2bS) (HmBn/mB) (46)

Equations 40 and 42 are then substituted into Eqs, 25 and 26 from which the

solution for the perturbation pressure _ and subsequently the spectral densi-

ty Sp are determined, ,

3.3 Natural Frequencies of the Double Wall Aircraft Windows

The natural frequencies of the coupled system can be determined by set-

_n " _n " E_(=) = 0 and maximizing the frequency response functionstlng

of Eqs. 45 and 46. For each set of modal indices(m,n),the naturalfrequen-

cies of the coupledsystemcan be calculatedfrom

_nn = {[ Bran± {Bm2n"4ACmn)_]/_)_ (47)

where

A = aTaB - b_ (48)

T2 B2
Bmn= (mT_mn+ Es/hs)a B + (mB%n + Es/hS)aT + 2bsEs/hS (49)

T2 02 )2Cmn= (mT_mn+ Es/hs)(mB_mn+ Es/hS) - (Es/h S (50)

Equation 47 gives two real characteristic values for each set of modal Indl-

ces {m,n). These roots are associated wtth the in-phase flexural and out-of- , ',

phase dtlatattonal vibration frequencies of the double wall system. The dtla-

tattonal vibration frequencies are strongly dependent on the core stiffness

represented by ES(_)/hso For large values of core stiffness these frequencies

could becomevery large, and the linear theory developed for a soft cope with
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a untaxtal stress-strain relatton would lose its meaning.

To account for the curvature effect of the exterior panel, the uncoupled

modal frequencies given in Eq. 49 are modified according to a proceduresug-

gested tn Ref. 13. Then, the uncoupledmodal frequencies of the exterior win-

doware calculated from

T 2 . ETm(°_mn)curved flat +
PTR2(m2+ (Lx/l.y)Zn2)Z (51)

whereR ts the averageradius of the curvature.

Pressurization of the cabin and/or depressurtzatton of the air space

betweenthe two windowsheets increases the stiffness of the plextglass plates.

Suchan effect can be included through the average in the plane loads_ x =

ApR/2and_y= apRcorrespondingto the axial and circumferential directions,
respectively. The natural frequencies are then calculated from

= .D_2 n2/L_)2(_mn)flat Xtpm-_" (m2/Lx2+ + (_xm2/Lx2

+ ITyn2/L_)/Pmh}_ (52)

It shouldhe notedthattheaveragevalueof the radiusR isdifferentfor

the interiorandexteriorwindowsheets,

3.4 External Pressure Field ' "

The externalsurfacepressureactingon theexteriorsideof theaircraft

windowis propellernoisedueto bladepassageharmonicsandtheturbulent "
.i

boundarylayer.The cross-spectraldensityof theinputpressureis assumed

to be separablein thedirectionof propagationand thatperpendicularto it

and is given as

t
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. e e

where Sj(_) is the power spectraldensityfor the J-th windowunit, C = x2 -

xI, n - Y2 " Yl are the spatialseparations,and Vx and Vy are the traceve-

loctttes corresponding to the x- and y-directions, respectively. The expres-

sion given in Eq. 53 is ltmtted to spatially non-decaying convecting sound

pressure fteldso The sound pressure levels characterized by the spectral

density Sj(_) are taken to be uniformly distributed over each wlndow surface,

but varying in a step-wise fashion from one windowto another. These spectral

densities are obtained from the exterior surface pressure data measured in

flight [1]. In addition, the empirical prediction of surface noise due to

propeller blade passage harmonics are uttltzed to distribute the noise inten-

sities over the aircraft fuselage [6]. Subsonic trace velocities correspond-

ing to the propeller rotation tip speed were taken for the vertical direction

y, and sonic trace velocities were a_sumedfor the longitudinal direction x

(normal to the propeller rotation plane). The values of Vy = 510 ft/sec and

Vx = 1100 ft/sec were used for all numerical computations.

3.5 InteriorWall Impedance

In calculatingthe noise transmittedintoan aircraftcabin through

windows,it is necessaryto prescribethe impedanceand the bulk reactance
i

at the interiorwalls. Due to the fact that the interiorwalls of an air-

craft cabin are not treateduniformly(depthwiseand spatially),the wall

impedanceis representedin the averagesense. Analytical[14]and empiri-

cal [15,16]expressionshave been used to representthe impedanceof walls

treatedwith porousacousticmaterials. For a normalacousticimpedanceof $
r

porousmaterialsbackedby a rigidwall, Ref. 15 definesthe fiberglassim- I

pedance by

-18-
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Z(m) _ (1 - ! coth [! (1 - i hf] (54)

The characteristic impedancefrom empirical data is usually expressed as a

futctton of the dimensionless parametar pf_/2_Rf [15],

tOf_ -0.754 Qf= -0.732 (55)
z(=)-pfcf((z+ oOSZZ_;I_T, -I(.o87(_T) )}

Numericalresultswere obtainedfor B(=) = 0 and the case where the in-

teriorwalls of the aircraftshown in Fig. 1 are treateduniformly. It was

found that for frequenciesabove 125 Hz, the noise transmittedthroughan

aircraftwindow is about the same for bothwall impedancemodelsgiven in

Eqs. 54 and 55. However,for frequenciesbelow 125 Hz. significantlylower

noise levelswere obtainedwhen the wall impedancewas representedby the

analyticalexpression(Eq,54). Furthermore,it was founu that the trans-

mittednoise levelsdid not changeby much when largervaluesof the treat-

ment thicknesshf were used in Eq. 54. Due to the unavailabilityof detailed

experimentaldata on the wall impedance,it is not clear which expression

gives a betterapproximationto Z(=). However,the main contributionto

cabin noise in this aircraftoccursfor frequenciesabove 125 Hz. Thus,

either Eq. 54 or Eq. 55 can be used to representthe absorptioneffectsat

the walls for the G/A aircraftconsideredin this study,
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4. NUMERICALRESULTS

4.1 Mode_ and Frequencies

The naturalfrequenclasof the doublewall aircraftwindowsshown in

Ftgs_ 3 and 4 were determined using Eqso 47, 51 and 52. The modesof these

panel: are sine modescorresponding to stmple support boundary conditions°

The naturalfrequenciesfor a typlcalaircraftwindow (PanelNo,,3 in Fig,

4} are given in Table I. These resultswere obtainedusing the followlng

data: Lx = 13.75 tn, Ly = 13.13, vT = vB = 0.35, hT = hB = 0.25 in, hS =

0.63 in, PT = PB = 1.06 x 10-4 lb-sec2/in 4, ET = 5.6 x 105 psi, Es = 4.6 x

105 psi, Pc = 1.1 x 10-7 lb-sec2/in 4, c = 13,224 in/sec, R = 30 in, Ap = Oo

The air spring in the cavity was modeled as Es/hs = PcC2/hs, The coupling

between the top and bottom plates is mainly provided by the action of the

air spring° The inertia coupling as given in Eqs. 30 and 31 is negligible

whenthe mediumof the cavity is air, The uncoupled natural frequencies

given in Table 1 were obtained utilizing Eqs, 49 and 51 for the curved top

plate and Eq. 50 for the flat bottom plate. To simulate, in approximation,

a clamped-clamped boundary condition, the stiffness of both plates was in..

creased by multtplytng DT and DB by /_, The coupled modal frequencies de-

noted by fC and fD correspond to in-phase flexural and out-of-phase dilata-

tional modes, respectively. The first dilatattonal modeoccurs at a frequen-

icy of 309 Hz while the first bending mode is at 165 Hz. These modesspan
'i

the rangeof the secondto.fourthpropellerblade passageharmonics. Slml- !
:i

far resultswere obtainedfor all the other aircraftwindowsshown in Flg.

4.
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4.2 Noise Transmission Through Aircraft Wlndows

4.2.1 Theory and Experiment

To verify the theoretical predictions developed in Section 3, a series

of experiments was conducted with an acoustic guide set-up as shown in Fig,

5. The inputs were generated by the acoustic guide and the outputs were

measured at eleven positions inside the. aircraft as shownin Fig. 5. The

test arttcle for these experiments was the fuselage of a bvtn engine 1957

Rockwell AeroConlnanderaircraft. The test windowmeasured 15 in x I5 in

and was constructed from a curved (R e 35 in) exterior and flat interior

plexiglass p_hel, each with a thickness of 0.14 in. The aircraft interior

was subjected to three absorbent wall treatments under each of which the

noise transmitted through the windowwas measured. These treatments in-

cluded: (1) Y-370 constrained layer damping tape; (2) Y-370 damping tape

+ three layers ofAAacoustic blankets + carpeting (floor); and (3) Y-370

damping tape + 1.5 ir thick foam with soft interior facing + carpeting (floor).

The one-third octave noise reductions are shown in Figs. 6 and 7 for the

case of a light w_ll treatment (Y-370 damping tape) at two positions in the

aircraft. The theoretical curves were obtained using Eq. 29 and the proced-

ures presented in Section 3. The interior wall absorption was modeled by

the empirical point impedanceexpression given in Eq. 55 with pf = 1.1 x 10-7

lb-sec2/tn 4, cf = 13,224 tn/sec and Rf = 10 x 104 mks rayal/mo The struc-

tural and acoustic modal damping coefficients were taken as

T T,T,T_
¢mn = _o_=11/_n J (56a) .

B B, B . B ,
Cmn= ¢oL=11/_mnJ (56b)

= {o(=lO0/=i,k)_j_ (57);iJk
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where=IJk are the modal frequenciesof the rectangularenclosurewhich can

be evaluatedfrom

=IJk c{(l_/a)2+ (J_/b)2= + (kx/d)2}_ (58)

The modal dampingcoefficientsof the aircraftwindowsmeasuredin the labor-

atory environment[17] are on the order of 5% of the criticaldampingfor the

T B 0.05fundamental mode. Thus, In the present study, the values of {o = {o =

were used for all the calculationso The acoustic damping coefficient Co is

a functionof the interiorconditionsof the cabin. For a lightlytreated

cabin,a value of _o = 0.05was used. Dampingof the acousticcavity bounded

by the two window platesis introducedthroughthe complexstiffnessmodulus

Es(1 + !gs). In view of the light dampingof a cavityfilledwith air, a

loss factorof gs = 0.02 was used.

As can be observedfrom the resultspresentedin Figs. 6 and 7, the

agreementbetweentheoryand experimentis relativelygood in view of the

complexitiesinvolved. Furthermore,these resultsshow that the noise

transmittedby a localizedpath such as a windowrapidlyattenuatesas the

distancefrom the source (window)and the point where the output is measured

at increases. The amountof noise attenuationat differentspatiallocations

is also a functionof the particularfrequency.

4.2.2 _perimental Studyof Noise TransmissionThroughAircraft
Windows

A seriesof experimentshave been conductedto assessthe significance

of noise transmissionthroughdoublewall aircraftwindows. The experimental ....

set-upis the sameone as that describedin Section4.2.1. The interior

noisemeasurementswere obtainedat about 10 inchesfrom the wall (except
,I

for positionNo. 11) for all the positionsshown In Fig. 5. The one-third
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octave noise reductions achieved by the three wall treatments described in

Section 4.2.1 are shown in Figs. 8 and 9 for two positions in the cabin.

The results shown in Fig. 8 correspond to the location of the window through

whtch the noise is being transmitted. At this particular position, the

noise reduction is the lowest. Furthermore, the acoustic foam seemsto ex-

htbtt better absorption characteristics than the two other treatments for

the frequency range of about 70-600 Hz. However, at locations away from the

noise transmitting window, no clear picture can be established of which treat-

ment gives the better noise attenuation. As can be observed from these re-

sults, the increase in noise reduction due to an add-on wall treatment is

not very great when the noise is transmitted through a localized and un-

treated (window)regionin an aircraft. This is mainlydue to the fact that

the add-onmaterialsterminateat the elasticsurfaceof which the aircraft

sidewallsare constructed. These elasticsurfacesvibrateand radiatenoise

energynot only into but also out of the cabin. However,if the walls of

the enclosureare acousticallyhard (semi-rigidwalls),the effectof add-on

treatmentswould be much more significantthan the resultsindicatedin Figs.

8 and 9. Suchan effectis illustratedin Fig. 10 where the noiselevelsin

the cabinare predictedanalyticallyfor two acousticdampingand acoustic

absorptionconditions. An acousticdampingcoefficient_o = 0.005and re-

sistanceof acousticmaterialRf = 50 x 104 mks rayals/mcould simulatesuch

an enclosurewith acousticallyhard walls.

To illustratethe noisevariationwithin the cabin,noise reductionis
!

plottedin Figs. 11-28for severalone-thirdoctavecenterfrequencies.The :

position#9 indicatedin thesefiguresalwayscorrespondsto the port slde

of the aircraft. As can be observedfrom these results,noise reductionin- j

creasesas the distancefrom the source(window)increases. Furthermore,

,
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noiseattenuationis in generalgreaterwhen acousticblanketsor acoustic

foams are added to the interiorwails. However,for frequenciesup to about

300 Hz, less noise reductionwas observedat some locationsfor a cabin

treatedwith Y-370 dampingtape+ acousticfoams or acousticblanketsthan

for a baselineconditionwith Y-370 dampingtape only. This could be at-

trlbutedto the decreasein the interiorvolumeof the cabin. The reduc-

tion is about 2 incheson all sides for acousticblanketsand 3 inchesfor

acousticfoams. The last layer of acousticblanketscoveredthe frames

whileacousticfoams were added to the interiorflangesof the frames. Fur-

thermore,noise reductionis somewhatgreaterat the rearof the cabin than

at the pilot or co-pilotpositions. Since the windshieldand forwardarea

of the cockpitwere not treated,it is to be expectedthat noise levelswill

be higherin that vicinity. For frequenciesup to about 500 Hz, acoustic

foam seemsto providemore noise attenuationthan three layersof AA acous-

tic blankets. Above 500 Hz, more noise reductionis realizedat most posi-

tions for the acousticblanketstreatment. In addition,for high frequen-

cies (above800 Hz) the noise distributionwithinthe cabin is more uniform

than it is at lower frequencies. For frequenciesup to about 500 Hz, the in-
i

crease in noise reductionat the locationof the source(10 inchesfrom the

window)rangesfrom about -2 to 3 dB for the AA"porousblanketsand 3 to 6

dB for acousticfoam treatments. For frequenciesabove 500 Hz, these ranges

are 3 to g dB and 0 to 8 dBj respectively.On the average,the sourcenoise

is attenuatedat the rate of about 2 dB/ft. However,at the wall opposite

the source,a lower rate of noise reductionwas observed. This is due to

the reflectionof the acousticwaves at the wall. Similartrendswere ob-

servedfor all of the threeadd-on treatmentsconsideredin this study.
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4.2.3 Theoretical Parametric Stud_ of Noise Transmtsstgn
Throuqh Aircraft Hlndows

The analytical model for calculating noise transmission (described in Sec-

tton 3) was applted to estimate the effect of acoustic and structural param-

eter variation on the cabin noise environment of a G/A aircraft whosetyptcal

features are shownin Ftg. 1. These calculations were perfomed for fltght

conditions and measured the propeller noise and turbulent boundary layer in-

puts [1]. The interior sound pressure levels were estimated in the vtctntty

of the propeller plane where the noise levels are expected to be the highest,

i.e., at x = 78 in, y = 36 in and z = 8 in (see Figs. 1, 2 and 4). The noise

transmitted was calculated at each of the_ndow units shownin Fig. 4. Then,

the total noise in the cabin due to all the windows was obtained by superpo-

sltlonof all the individualcontributions.

The narrowband sound pressurelevelsdue to the noise transmitted

through window untt No. 3 are given in Fig. 2g. Distinct peaks at the pro-

pellet blade passage harmonics are observed for frequencies up to about 800

Hz. The transmitted noise is clearly dominated by the first three blade pas-

sage harmonics. However, the A-weighted one-third octave noise levels shown

in Fig. 30 suggest that the matn contribution to cabin noise on an A-weighted

scale comesfrom the second and third blade passage harmonics. The total

noise transmitted by all window units is also shownin Fig. 30. The interior

noise at this location is dominated by the noise transmitted by window unit

Nos. 2, 3 and 5. These results serve as the baseline configuration of noise

transmission through aircraft windows for the noise optimization study pre- ' ..
,

sented in Ref. 1. The results shownin Figs. 29 and 30 indicate relatively ....

high noise levels tn the frequency range of about 100-300 Hz. The main peaks
I

are at the secondand third blade passage harmonics. To improve the interior
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noise environmentof this aircraft,additlonalnoise attenuationwould need

to be achieved by the windows. In view of these observations, an extensive

parametric noise transmission study has been conducted. For thts purpose,

window unit No. 3, located in the vicinity of the propeller plane, is se-

lected as the baseline configuration. Then, the noise transmitted through

this window is calculated for a varteW of add-on treatments and/or new de-

sign configurations.

The effect of the addition of non-load carrying mass to the outside

(curved) and inside windows is given in Figs. 31 and 32, Adding mass to the

outside window has only a minor effect on noise reduction in the frequency

range 100-300 Hz. Furthermore, noise increases for frequencies above 400 Hz.

This is due to the fact that wtth added mass, manymore modesare now par-

ticipating at high frequencies. Since the outside windowmerely provides the

vibration coupling with the inside window via the air gapp the application of

the mass law to the noise attenuation of double wall systems is not valid in

this case. Mass addition to the inside window increases the noise at the

first propeller blade passage harmonic, but it decreases noise at most other

frequencies. Approximately 3 dBAand 5dBAadditional noise reduction is

realized at the secondand third blade passage harmonics, respectively, with

2 lb/ft 2 of mass added to the inside window. The effect on the transmitted

noise due to an increase or decrease in the plexiglass thickness of the out- .

stde and inside sheets ts illustrated in Figs. 33 and 34. As can be observed _.,_

from these results, increasing the thickness of the exterior sheet could be t" :".
o _','

very effective for noise transmission control. Stmilar trends were observed ,,,

from tests of double wall windows _8]. Doubltng of the exterior window thick- !_,,.

hess (from 0.25 in to 0.5 in} would decrease the interior noise at the second l',.

and third blade passage harmonics by about 12 dBAand 9 dBA, respectively.
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Doublfngof the interior sheet thickness Increases noise reduction at the

samefrequencies by about 8 dBAand 3 dBA, respectlvely. A thtnner window

construction (h - 0.125 in} would increase tntertor noise by about 3-6 dBA

at the first blade passagehamonic and by 1 dBAat the secondand third

blade passagehamontcs. However,a substantial increase tn transmitted

noise would result for frequencies above400 Hz.

The interior notse levels for different windowsizes are plotted in Fig.

35. A smll windowsize of 10 tn x 10 in showssubstantial gains over the

baseline windowof 13.75 x 13.13 in at the first three blade passageharmon-

ics. However,a smaller windowtransmits morenoise for frequencies above

300 Hz. Theeffect on noise transmission due to different cavity depths

(distance betweenthe outside and inside windows)is shownin Fig. 36. From

these results it can be seenthat only whenthe cavity depth becomesunreal-

tstically large does the noise attenuation at the secondand third blade pas-

sage harmonicsreach 3 dBAand g dSA, respectively. Theeffect on noise

transmission due to changesin the elasttc modulusof the exterior and in-

terior windowsis shownin Figs. 37 and 38. As can be seenfrom those re-

sults, an increase in the elastic modulusof the interior sheet has a negli-

gible effect at the secondand thtrd blade passagehamonicso A similar in-

crease in the elastic modulusof the exterior sheet results in about 2 dBA

noise attenuation at the samefrequencies.

To accountfor the curvature effect of the exterior window, the modal

frequencieswerescaledbymultlplylngthenaturalfrequenciesof theflat

panels by v_'_o All the results shownin Figs. 29-38 were obtained using
t ,,

this procedure. It is believed that sucha frequency scaling approximates

the baseline configuration. However,the natural frequencies of curvedpan-

els can be calculated from Eq. 51 where, to accountfor curvature, a modtfica-
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tlon factor has been introduced. It should be noted that this equation is

approximate and only allows for a correction to the flat panel equation.

The tntertor notse levels are plotted in Ftg. 39 for several values of the

exterior window sheet radius R, With a decreasing value of the radtus R,

the stiffness of the extertor panel Increases, resulting in lower noise le-

vels for frequencies up to about 400 Hz. The radius of the curvature of the

baseline construction is about R = 30 in. Thus, for frequencies of up to

400 Hz, the baseline configuration and Eq. 3g give approximately the same

results. However, for frequencies above 400 Hz, the noise levels are sub-

stanttally higher when Eq. 39 is used. This is due to the fact that modal

frequencies above 400 Hz are lower when using Eqo 39 as comparedto those

using the baseline. Thus, several additional modesare now included in this

frequency range. For a baseline configuration, those modeswere above the

frequency cut-off considered in this study (1124 Hz). However, in all of

these cases the interior noise is still dominated by the secondand third

blade passage harmonics. Only when the radius decreases to R = 15 in, does

the noise at higher frequencies (above 400 Hz) start to dominate. A window

with R = 15 in might be an unrealistic design.

The core material(air in the baseltne design)providescoupling between 'i

the motions of the outside and inside window sheets. To evaluate the effect ,i
i

of a dense core, it is assumedthat the air space between the two sheets is i

ftlled with a clear flutd which is allowed to expand and contract through the

spaces provided at the boundaries. The density of the fluid is taken to be

equivalent to the density of water (1.94 slugs/ft3). The spring constant of

the expanding/contracting flutd is represented by kS = Es/h$ where _ =

Eo(1 + !g) is the complex stiffness modulus of the flutd under bulk compres-

sion, g is the loss factor and hS is the core thickness. If the cavity is
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filled with a fluid a,ndthe boundariesare sealed, Eo is very large and a

nearly Incompressiblecondition ts achieved. In thts case, the soft core

modelusedin the present study becomestnvaltd. However,tf a porousbound-

ary condition is constructed so that a portion of the flutd could leave the

matncavity under compression,relatively small values of the compressabtltty

constant Eomight be achieved. The results shownin Fig. 40 reflect the ef-

fect of core stiffness. The results correspondingto Eo = 3 x 103 psi would

tmply an almost incompressiblecore andmight not be valid for the present

soft core model. For the hard core representation, sheer deformations and

rotary inertia effects would needto be included. Thoseresults tend to in-

dicate that a core filled with heavyfluid would not give the required noise

attenuation at high frequencies. However, those results are obtained for

relatively low dampingvalues of the core matertal (g = 0.02). If the core

is replacedwithsomeformof a transparentsoft viscoelasticmaterial,the .:

dampingin thecorewouldincrease.The effectof dampingin thecoreon

noisetransmissionis illustratedin Fig.41 for thecasewhereEo = 30 psi.

The resultsshownin Fig°41 forlargevaluesof thelossfactorg and heavy

coremightbe unrealisticsincewithsuchan amountof dampingthemotions

of theexteriorsheetarenot transferredthroughthecoreintothe interior

windowsheet. The vibrationalenergyof theoutsidewindowis dissipatedby

theactionof thecoresincethecouplingthroughtheboundariesis neglectedo

Fromthe resultsshownIn Flg.40 and41, it can be seenthatthenoisetrans-

missioncharacteristicsof a doublewallsystemwitha heavycoreare slgnif-
t' '

icantlydifferentfromthecasewherean air springis usedto modelthecore _.
|,_ ,.

behavior.In additionto thestiffnesscoupling,a heavycorealsoinduces i'

strong inertia coupling betweenthe two plextglass plates. Sucha coupling i"
4 o

seemsto bemorepronouncedat higherfrequencies.

-29-

1984003816-TSC09



The effecton noisereductiondue to depressurlzatlonof the air space

between the two pIextglass sheets has been investigated. A pressure differ-

ential between the core and the exterior space induces in-plane loads and

Increases the stiffness of the plextglass sheets. Thus, the modal frequen-

cies of the coupled double wal] system increase with an increasing pressure

differential. However, the amount of pressure differentia] that can be ap-

plied is limited by the maximumpenel deflection (static} and the air space

between the two panels. Thus, htgh pressure differentials would not be suit-

able for practical Implementation of noise transmission control. The effect

of the pressure differentia] Ap was Included in the analytical model (Eq. 52)

by introducing the average tn-plane loads_ x and N"ycorrespondtng to the ax-

tal and circumferential directions, respectively, and changing the constant

of air spring between the window panes. The parameter R denotes an average

va]ue of the radius of the window pane curvature. It should be noted that

such an average value is different for the exterior and interior window

sheets. The results shown in Fig. 42 indicate the effect of depressurlzing

the double wall window. The increase in noise reduction ranges from about

1 to 3 dBAfor Ap = 2 psi and from 3 to 6 dBAfor Ap- 4 psi. These results

were obtained using the analytical wall impedancemodel given in Eq. 54 and

the natural frequency equations (Eqs. 47, 51 and 52) with R = 30 in. Due to

large deflections of the window panes [18] for htgh pressure differentials

and relatively modest gains in noise attenuation, depressurtzing the double

wall window does not seem to provide an a]ternattve for noise transmission

control.
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B. NOISE TRANSMISSIONOPTIMIZATIONFOR LEASTADDED WEIGHT

The resultspresentedIn Section4 indicatethe advantagesor disadvan-

tages of each particularwall treatmentand the structuralparameterchanges

tn the noise transmitted through double wall aircraftwindows. The present

design of thts type of aircraft tncludes twelve windows wtth a total surface

area of about fifteen square feet (15 ft2). The area of the windshield ts

not tncluded in thts figure. Thus, an tncrease tn the surface density of 1

lb/ft 2 would add about 15 lbs to the weight of the aircraft° The optimiza-

tion criterion is taken to be such that the noise transmitted through a win-

dow located in the vtctnity of the propeller plane should not exceed 80 dBA

at all frequencies. The noise transmitted through other windowunits wtll

be less since the inputs are lower for those windows. Then the total overall

noise transmitted by all windowunits will be on the order of about 83-85 dBA.

The results of the parametric study are summarized in Table 1, The

noise levels and incremental noise losses ATL at the three highest peaks are

given in Table 1. The added weight for a single windowunit and for the en-

tire aircraft are tncluded in this table. As can be observed from those re-

sults, the selected optimization criterion wtll be basically satisfied for

the following two cases: (1) an increase in the outside window thickness

from 0.25 in (baseline) to 0.5 tn and (2) a decrease in window size from the

baseline(13.75in x 13.13 In) to about 10 in x i0 In° The added weightto !

the aircraftwould be about 27 Ibs for the first case and negligibleweight

In the secondcase. It shouldbe noted thatwhen the windowsize is reduced,

the areas of the surroundingelasticpanelsincreases, Such an increasein

panel stze could contribute to additional noise transmission tnto the air-

craft due to the vibration of the elastic panels. Thus, to achieve the re-
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quired noise attenuation for the double wall windows the follewing steps

should be taken: (1) Increase the outside window thickness to about 0,4 tn;

(2) Decrease the window size by approximately one inch on all sides; (3)

Increase the distance between the two windows by 30-40% (replacing the flat

tnslde window sheet with a curved sheet could achteve this condition),, The

added weight to the atrcraft tn this case would be about 25 lbs, The opti-

mized A-weighted one-third octave soundpressure levels are given tn Fig,, 43_

The main effect of an interior wall treatment ts to reduce the noise as

tt enters' the cabin through the vibrations of the elasttc panelso For notse

entering through an untreated panel such as a window, parttal attenuation is

achieved through soundabsorption at the treated interior walls, At the

first contact, the sound wave will pass into the porous acousttc matert_;1

where it is partially absorbed. The present study indicates that either

acoustic foams or acoustic porous blankets provide somenoise attenuation

where the noise is transmittedthroughaircraftwindows. This is especially

evidentfor positionsinsidethe aircraftwhich are at some dlsta_cefrom

the noise transmittingsource. The foam treatmentseems to give betternoise

absorptionat low frequencies(up to about 500 Hz) while the acousticblank-

ets are more absorbentat higherfrequencies.The amountof weightadded to
1

the aircraftdue to these treatmentsis relativelysmall° Furthermore,such

a wall treatmentalso providesthermalinsulation.

o
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6. CONCLUSIONS

An analyticalmodel has been developedto predictthe noise transmitted

throughdoublewall aircraftwindows. The analytlcalprodlctlo,methodhas

been validated experimentally with laboratory tests utilizing the cabin of

a twln engineG/A aircraftand localizednoise inputs. Experlmentswere

also performed to esttmate noise distribution characteristics within the

cabtn for typtcal acousttc add-on treatments. The theoretical model has

been used to opttmtze the cabtn notse due to propeller notse tnputs.

The amount of noise transmitted through the windows ts relatively high

for this aircraft. For the baseltne configuration, the peak levels of the

interior noise are about 88 dBAat the second and third propeller blade pas-

sage harmonics. These noise levels have been reduced to about 80 dBA through

design parameter changes in the double window construction. It was fourd that

increasing the exterior plexiglass thickness and/or decreasing the total win-

dow size could achieve the proper amount of noise reduction for this aircraft.

The tot_l added weight ot the aircraft is then about 25 lbs.

t

t
mb .
!
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Table 1 NaturalFrequenciesof DoubleWall
WindowUnit No. 3 (.Figure4}

Mode Number Frequencies,Hz Frequencies,Hz

m n fT Uncoupled fB fC Coupled fD

1 1 227 121 165 309
2 1 42/ 294 326 463
3 1 642 583 598 671
4 1 966 987 973 1008
1 2 289 31I 299 384
2 2 477 484 480 536
3 2 747 773 756 800
4 2 1103 1177 1114 1191
1 3 563 628 580 656
2 3 726 801 741 , 822
3 3 995 1090 1007 1104
4 3 1361 1494 137D 1503
1 4 958 1071 971 1085
2 4 1115 1244 1127 1256
3 4 1378 1533 1388 1542
4 4 1744 1938 1751 1944

fT = top plate

fB = bottomplate

fC = coupledflexure

fD = coupleddilatatlonal

t
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APPENDIX
Ltst of Symbols

a,b,d = dimensions of rectangularenclosure

aB = mT + ms/3

aT - mB + ms/3

A " surface area

T B
Amn,Amn - generalized coordinates of top and bottom plates,

respectively

bs = ms/6

B = bulk reaction coefficient of absorbing layer

c = speed of sound

cf = speed of sound in porous material

= dampingcoefficients (per unit area) of bottom
CB'CT plate and top plate,respectively

O - flexuralrigidityof a plate

DB,DT = flexuralrigiditiesof bottomplate,flexiblewall,
and top plate,respectively

EB,Es,ET = modullof elasticityof bottomplate,softcore,
and top plate, respectively

ES(_) = E_(_) + tE_(_) = complexYoung's modulusof viscoelastic core material

gs = structural damping factor of soft core ,

gs(,,,)= E_(_)/E_(_) = dampingfactorof viscoelasticcore

6(z) ,, function chosen to modify acoustic boundary condi-
tions

h = plate thickness

hB,hs,hT - thicknesses of bottom plate, core, and top plate,
respectively

hf = thickness of porous material ')

l,J,k,_,m,nmr,S,U = structuraland acousticmodal indices
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I = /f - imaginary unit

KS = constitutive law operator of the core

ks = spring stiffness of the core

Ltdmn - acoustical-structural modalcoupling coefficients

Lx,Ly = dimensionsof plates

mB,ms,mT = densities of bottom plate, soft core, and top plate, respectively,per untt area

Mmn,MmnB T = generalized massesof bottom and top plates, respectively
n = outv_rd normal to walls of enclosure

_x,_y - average in-plane membranestress resultants of the plates
NR = noise reduction

NR1/3 = 1/3-octave noise reduction
p = acoustic pressure field inside enclosure

PO = reference pressure = Z.9 x 10-9 psi = 20 _N/m2

PE = external noise pressure acting on the doublewall system

Pf = porosity
B T
Pmn,Pmn= generalizedrandomforces

qtj = acoustic modalcoefficients

qljk = acoustic generalized coordinates
R = averageradius of curved_ndow

Rf = reststtvftyof porousmaterial

S_ = cross-spectral density of randomnoise input

Sj = spectral density of the input for the j-th window

Sp = spectral density of acoustic pressure inside enclosure

S_ - prescribed spectral density of external noise pressure
SPL = soundpressure level measuredin decibels relattve to the refer-

ence pressurePO
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Vx,Vy = convectionvelocities of propeller notse correspondingto direc-tion along propeller rotation and perpendicular to it, respec-
tively

WB,WT - deflections of bottomplate andtop plate, respectively

xs =relattve deformation of core

x,y = coordinate systemfor plates

x,y,z = Cartesian coordinate systemfor enclosure

Xmn = modeshapesof top or bottom plate

YtJk = acoustic modeshapes

Z = impedanceof absorbing layer

¢ = acoustic dampingcoefficient

= Dlracdelta function

=2 = (3-D) Laplactan operator

v_ = (2-D) Laplactan operator to be taken on boundarysurface

v4 = bthamontc operator

¢0 = arbitrarily small but non-zero positive number

_tJk = acoustic modaldampingratios
B T

_mn,Cmn= modal dampingratios of bottom and top plates, respectively I

nS = viscosity of viscoelastic core material
B T

emn,emn= frequency responsefunctions of the double wall system +)

VB,VT = Potsson's ratios of bottomand top plates, respectively +i

¢,n = spatial separations

(0 = acoustic modaldampingcoefficient '
J

p = airdensity "'

Pc = airdensityin cavity ,:

pB,PS,PT= material densities of bottom plate, soft core, and top plate, res-
pectively
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pf - gas denstty in porousmaterial

Pm - material density of the plato

= circular frequency, Fourter transform vartable

_tJk =acousttc natural frequencies

_'_u = lower andupper boundfrequencies, respectively
B T

_mn'%n = uncoupledfrequencies of bottomand top plates, respectively

%n = natural frequencies of the coupledsystemof doublewalls
- =Fourter transfom
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